

IMMOBILIZED RHODOCOCCUS BIOCATALYSTS FOR ENHANCED BIOREMEDIATION

Irina Ivshina, Maria Kuyukina, Anastasiya Krivoruchko

Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, 13 Golev Str., 614081, Perm, Russia

Microbiology & Immunology Department, Perm State University, 15 Bukirev Str., 614990, Perm Russia, E-mail: kuyukina@iegm.ru

Introduction

- Crude oil extraction and transport are often accompanied by soil contamination with hydrocarbons and heavy metals
- Land contamination negatively impacts economical and social developments, threats human health and natural biodiversity
- Bioremediation has a great potential to restore polluted environments by using biodegradation & bioaccumulation activities of microorganisms
- Immobilized biocatalyst advantages: high cell loading, stress resistance, functional stability, repeated usage, convenient storage and transport

Who has the oil?

World Reserves	of Oil		The U.S. uses the most	oil		
	Billions of Barrels	Percentage of World Reserves	Percentage of world oil reserves vs. oil	consumption		
Saudi Arabia	262.73	22.3%	Reserves	Consumption		
ran	132.46	11.2%	2527-013203			
Iraq	115.00	9.7%	1.8%	25%	United States	environmental action 😝
Kuwait	99.00	8.4%	1.8%	23%	united states	
United Arab Emirates	97.80	8.3%	1.5%	18.8%	Western Europe	44 Winter Street, 4th floor, Boston, MA 02108
Venezuela	77.22	6.5%				
Russia	72.27	6.1%	1.4%	6.9%	China	617-747-4404 (ph) • 617-292-8057 (fx)
Kazakhstan	39.62	3.4%				info@environmental-action.org
Libya	39.12	3.3%	10.3%	6.8%	Eastern Europe	ч
Nigeria	35.25	3.0%				www.environmental-action.org
United States	21.37	1.8%	6.5%	0.7%	Venezuela	
China	17.07	1.4%	9.5%	3.4%	Africa	
Canada	16.80	1.4%	9.5%	3.979	Alfica	
Qatar	15.20	1.3%	62.2%	6.6%	Middle East	Each country's size is proportional to the amount of oil it contains (oil reserves); Source: RP Statistical Review Year-End 2004 & Energy Information Administration

Source: BP Statistical Review Year-End 2004 & Energy Information Administration

World distribution of oil (proven reserves)

Amoco Cadiz / Exxon Valdez

6th largest oil spill: 68.7 million gallons 53rd largest oilspill:11 million gallons

Ixtoc I blowout, Mexico 1979

World's second largest oil spill: est. 428 million gallons

Deliberate release, Kuwait

Unburned oil in the Burqan Oilfield

Burning oil wells, Kuwait

World's largest oil spill was deliberate: estimated 1.5 billion litres

Deepwater Horizon, Mexican Gulf, 2010

Estimated 50-60 thousand barrels/day

Total release ~ 4-5 million tones

- The Urals is the second largest oil-production area in Russia.
- A quarter of the industry of Perm region is oil and gas.
- There are 222 oilfields in Perm region, and unexplored oil resources estimate about 600 million tones.

Krasnovishersk

Unit No.12

Bereznik

Solikamsk

Unit No.11

Kudymkar

Unit No.4

Unit No.8

Unit No.7

Usinsk catastrophe, 1994

The worst accidental spill on land

130 000 tones of crude oil released from a ruptured pipeline

Worst oil spill on land (*Guinness Book*)

1 1.120

Waste oil pits

- A leftover from oil exploration and refinery on land
- Over the years light fractions evaporate, and the pits contain viscous and debris laden asphalt-like oil
- Oil wastes are harmful due

 (i) volatile hydrocarbon
 emission; (ii) penetration into
 soil and groundwater
- There are several oil waste pits in Perm region

Petroleum hydrocarbons – Priority Pollutants

United States Environmental Protection Agency Advanced Search LEARN THE ISSUES | SCIENCE & TECHNOLOGY | LAWS & REGULATIONS ABOUT EPA Water: CWA Methods You are here: Water » Science & Technology » Analytical Methods & Laboratories » CWA Methods » Priority Pollutants Water Home Priority Pollutants Drinking Water Priority pollutants are a set of chemical pollutants we regulate, and for which we have Education & Training developed analytical test methods. The current list of 126 Priority Pollutants, shown below, can also be found in Appendix A to 40 CFR Part 423. Grants & Funding

- 1. Acenaphthene
- 2. Benzene
- 38. Ethyl benzene
- 39. Fluoranthene
- 55. Naphthalene
- 72. Benzo(a)anthracene
- 73. Benzo(a)pyrene
- 74. Benzo(b)fluoranthene
- 75. Benzo(k)fluoranthene
- 76. Chrysene

- 77. Acenaphthylene
- 78. Anthracene
- 79. Benzo(g,h,i)perylene
- 80 Fluorene
- 81. Phenanthrene
- 82. Dimethylbenza(a)anthracene

A–Z Index

🖂 Contact Us 🕝 Share

Background on

this List

SEARCH

- 83. Indeno(1,2,3CD)pyrene
- 84. Pyrene
- 86. Toluene

Endocrine-disruptive action !!!

Negative impact on natural ecosystems

Biodiversity of oil-degrading microorganisms

r			
Morphogroups	Total > 150 genera		
Mycelial fungi	Antrodia, Phanerochaete, Pleurotus, Chrysosporium, Cunninghamella, Stropharia, Cladosporium, Hypocrea, Graphium, Fusarium, Aspergillus, Mucor, Penicillium, Rhizopus, Trichoderma, Cladophialophora		
Yeasts	Candida, Clavispora, Debaryomyces, Leucosporidium, Lodderomyces, Yarrowia, Rhodosporidium, Rhodotorula, Trichosporon, Sporidiobolus, Sporobolomyces, Stephanoascus		
Bacteria	Aeromonas, Arthrobacter, Bacillus, Burkholderia, Sphingomonas, Rhodococcus, Mycobacterium, Acinetobacter, Alteromonas, Moraxella, Micrococcus, Flavobacterium, Pseudomonas, Cyanobacteria		
Algae	Chlorella, Phaeodactylum, Haematococcus, Emiliania, Dunaliella, Umbellularia, Cinnamomum, Nannochloropsis		

Mostly studied hydrocarbon-oxidizing bacteria

Pseudomonas

Rhodococcus

What is bioremediation ?

- Biodegradation by microorganisms
 - Mineralization
 - Contaminants used as a food source and destroyed
 - Cometabolism
 - Contaminants not used as a food source, but transformed to less hazardous chemicals
- Immobilization by microorganisms or plants
 - Removal of metals by adsorption, precipitation or accumulation

Petroleum hydrocarbons

Bioaugmentation as bioremediation strategy

The IEGM Collection of Alkanotrophic Microorganisms

More than **3000** non-pathogenic and aerobic bacterial cultures isolated from **contrasting** climatic regions.

www. iegmcol.ru

WDCM # 768 http://www.wfcc.info/datacenter.html

- 86 species of 19 bacterial genera
- Cultures of the genus *Rhodococcus* comprise the major portion of the Collection
- Strains biodestructors of organic pollutants, producers of amino acids, enzymes and biosurfactants

Why rhodococci?

REGIONAL SPECIALISED COLLECTION OF

ALKANOTROPHIC MICROORGANISMS

Rhodococcus advantages

- Typically bacterial type of growth
- Non-spore forming and non-motile
- Oligocarbo- and oligonitrophilia
- No antagonistic action and pathogenicity
- High stress resistance
- Adhesion to hydrophobic liquids & solids
- High catabolic diversity and unique enzymatic capabilities

Oligocarbophilic *Rhodococcus*

Growth of *Rhodococcus erythropolis* on "minimal" agar. Oligotrophs – organisms able to grow at organic carbon concentration < **1 mg /l.**

Growth cycle of Rhodococcus ruber

Scanning Electron Microscope (SEM) images of *R. ruber* IEGM 231 cells

REGIONAL SPECIALISED COLLECTION OF

> ALKANOTROPHIC MICROORGANISMS

Transmission Electron Microscope (TEM) images of *R. ruber* IEGM 231 cells

REGIONAL SPECIALISED COLLECTION OF

ALKANOTROPHIC MICROORGANISMS

Atomic force & confocal laser scanning microscopy

LIVE/DEAD[®] BacLight[™] Bacterial Viability Kit (Invitrogen)

Combined AFM/CLSM images of *Rhodococcus* cells exposed to organic solvents: 1 – control, 2 – cyclohexane, 3 – toluene. Viable cells – green, dead cells – red color.

Metabolized organic substances/pollutants

Saturated hydrocarbons	Gaseous: C_3 - C_4 . Volatile: C_5 - C_{10} Liquid: C_{11} - C_{16} Solid: C_{17} - C_{20}	Aromatic amines	Anilines, toluidines (<i>о-, м-, р</i> -)	Soil Sed. Contaminat. 2003, 12 , 85-99. Int. Biodeter. Biodegrad. 2004, 54 , 167-174; 2009,
Aliphatic alcohols	Monohydric: ethanol, propanol-1, butanol-1, pentanol-1, octanol-1, hexanol-1, isopropanol, isobutanol	Organic sulphides	Thioanisole	 63, 427-432; 2013, 84, 118–125. Environ. International 2005, 31, 155-161. J. Microbiol. Methods 2009, 79, 76-81.
Phthalic acid esters	Dimethylphthalate, dibutilphthalate, dimethylterephthalate, diethylhexylphthalate	Crude oil	Crude oils of various compositions, oil refinery products	J. Mol. Catal. B: Enzym. 2016, 123 , 8-13. J. Env. Chem. Engineer. 2017, 5 , 252-1260. J Hazard. Materials
Aromatic hydrocarbons and their derivatives	Methyl benzene, BTEX, phenols, naphthalene, PAHs	Fats ad oils	Cutting fluids, mineral and vegetable oils	2018, 346 ,103–112. Appl. Biochem. Microbiol., 2005, 6 , 626-633; 2014, 4 , 443-447; 2017, 53 , 435-440.
Aromatic acids	<i>m</i> -Oxibenzoic, <i>p</i> -oxibenzoic, salycilic, terephthalic	Surfactants	Alkamon-D, alkyl- sulfonate, alkyl- behzenesulfonate	Bioresource Technol., 2008, 88 , 2001-2008. Catalysis in Industry 2009, 2 , 44-49; 2012, 1 , 67-74;
Isoprenoids	Dehydroabietinoic, isopimaric acids, β-sitosterol , betulin	Antibiotics	Oxacillin, chloramphenicol, erythromycin	2017, 9 , 331-338. Biotechnology in Russia 2004, 5 , 49-56; 2011, 1 , 76-83.

Rhodococcus adaptations to harsh soil conditions **Rhodococcus** adaptations **Environmental conditions** Limiting factors Low soil temperature Delayed metabolism Low biodegradation Increased rate membrane fluidity Mass-transfer limitation Increased oil viscosity Biosurfactant Low bioavailability production Sorption to the soil Low volatilization of **Resistance** to Inhibition of soil toxic low-molecular Increased toxicity organic solvents microorganisms weight compounds Osmotic stress & cell dehydration Low soil moisture Resistance to desiccation Nutrient diffusion limitation Low nutrient content Olygotrophy & N₂-fixation & intracellular lipid storage N and P limitation

Kuyukina M.S., Ivshina I.B. Bioremediation of contaminated environments using *Rhodococcus* // In: Microbiology Monographs / Ed. A. Steinbüchel. Springer-Verlag, Dordrecht, London, New York, 2019. V. 16. P. 231-270.

Potential biosafety risks for mycolata group

	Number of species (% from total number)				
Genus (number of valid species)	Non- pathogenic (risk group 1)*	Opportunistic (risk group 2)*	Pathogenic (risk group 3)*	No data on pathogenicity	
Corynebacterium (66)	13 (20)	43 (65)	1 (2)	9 (14)	
Dietzia (4)	2 (50)	1 (25)	0	1 (25)	
Gordonia (19)	10 (53)	3 (16)	0	6 (32)	
Mycobacterium (110)	43 (39)	54 (49)	7 (6)	6 (6)	
Nocardia (61)	12 (20)	33 (54)	2 (3)	14 (23)	
Rhodococcus (46)	42 (91)	2 (4)	0	2 (4)	
Tsukamurella (7)	1 (14)	3 (43)	1 (14)	2 (29)	

*Risk group classification (prokaryotes): European Community classification. List of Prokaryotic Names with Standing in Nomenclature [http://www.bacterio.net]; Bacterial Nomenclature Up-to-Date [http://www.dsmz.de/microorganisms]

Rhodococcus biocatalyst fields of application

Ivshina I.B., Kuyukina M.S. Specialized microbial resource centers: a driving force of the growing bioeconomy // Microbial Resource Conservation. Ed. S. Sharma, A. Varma / Soil Biology. Springer Nature, 2018. V. 54. P. 111-139

Immobilization of *Rhodococcus* cells on different matrices

Immob	oilization matrix	Water absorbing	Bacterial	Hexadecane degradation rate, mg/g∙h
Base material	Treated with hydrophobizing agent	Water-absorbing capacity, g H ₂ O/g	adsorption, mg of dried cells/g	
Sunflower	None	2.03 ± 0.18	9.0 ± 3.0	53.0 ± 4.0
husks	Linseed oil varnish ("Olifa") (1:2, v/v)	1.52 ± 0.08	2.0 ± 0.5	42.0 ± 6.0
Sawdust	None	2.55 ± 0.15	39.0 ± 5.0	71.0 ± 7.0
	"Olifa" (1:2, v/v)	0.39 ± 0.02	15.5 ± 1.5	46.0 ± 6.0
	"Olifa" (1:0.1, v/v)	$\textbf{1.24} \pm \textbf{0.09}$	46.5 ± 1.0	107.0 ± 9.0
	Si-organic emulsion	1.93 ± 0.10	46.0 ± 3.0	65.0 ± 2.5
	Biosurfactant	1.54 ± 0.05	40.0 ± 4.5	72.0 ± 4.5
	<i>n</i> -Hexadecane vapour	1.68 ± 0.12	41.0 ± 4.0	42.5 ± 5.0
Chicken	None	1.65 ± 0.10	6,0±1,0	43.0 ± 7.0
feathers	"Olifa" (1:0.1, v/v)	1.48 ± 0.12	56.0 ± 6.5	61.0 ± 4.0
	Si-organic emulsion	1.60 ± 0.04	69.0 ± 5.6	83.0 ± 8.0

RU Patent 2298033; Podorozhko et al. (2008) *Biores. Technol.* 99:2001-2008; Kuyukina et al. (2009) *Int. Biodeter. Biodegrad.* 63:427–432; Krivoruchko et al. (2019) *Catalysts* 9(3):236

Unmodified sawdust x 1000

Hydrophobized sawdust with immobilised *Rhodococcus* cells x 1000

RU Patent 2298033

S4700 5.0kV 12.0mm ×1.00k SE(U) 19/06/03 09:56
R. ruber cells entrapped in **P**oly(**V**inyl **A**lcohol) cryogel, x 15000

10.0un

S4700 5.0kV 8.8mm x15.0k SE(U) 29/05/03 13:31

R. ruber cells entrapped in PVA cryogel, x 4500

S4700 5.0kV 8.8mm x4.50k SE(U) 29/05/03 13:27

Fate of hydrocarbon pollutants in soil **Biosurfactant micelles** desorption adsorption biodesorption mineralization biosynthesis $CO_{2} +$ H_2O biomass humification delayed mineralization

Structure of Rhodococcus biosurfactant

Oil & PAH removal from soil using *Rhodococcus* biosurfactants

<i>Rhodococcus</i> species	Oi I	l remo II	oved, % III	IV	Hydrophobic fraction removed from oil sludge
R. erythropolis	96	77	70	63	Cont i
R. opacus	87	77	22	10	
R. ruber	98	98	87	50	
Control (water)	31	20	5	2	Oil → sludge
				\rightarrow	Siuuge

le column le colo i c

Oils have increasing asphaltenes and high molecular weight paraffins

Ivshina et al. (1998). World J. Microbiol. Biotechnol. 14: 711-717; Kuyukina et al. (2005). Environ. Int. 31: 155-161; Ivshina et al. (2016) J. Hazard. Mater. 312: 8–17

Heavy metal removal (%) from soil

Heavy	Rhodococcus	biosurfactant	Tween 60	Control (water)
metals	Crude	Purified		
Cd ²⁺	82.3	48.1	16.5	2.3
CrO ₄ ²⁻	87.1	58.0	19.3	3.9
MoO ₄ ²⁻	88.3	54.6	19.7	6.3
Ni ²⁺	92.5	66.7	21.1	4.8
Pb ²⁺	68.7	42.3	15.1	1.8

Kuyukina et al. (2010). Russian J. Biomechanics. 14, 4 (50), 34-40; Ivshina et al., (2013). Ecology. 44, 123-130.

Bioremediation scheme for oil-contaminated soil

RU Patent 2180276; RU Patent 2193464

Bioremediation scheme for oil-contaminated soil Clean soil Achievement of SSTL TPH > SSTL TPH < SSTL for TPH fractions Site closure -Risk assessment (final) -Customer acceptance -Consideration on future soil use Forestry, fire dikes, Agriculture, building Technical use (roads, fuel floodwalls etc. & gardening stations, car parks etc.)

RU Patent 2180276; RU Patent 2193464

Pilot bioreactor & biopile systems

Bioreactor parameters

- Work volume 30 m³.
- Work regime periodic.
- Solid phase 30-40%.
- Air supply 50 liter/min.
- Mixing rate 50 rpm.
- Biocatalyst (2 kg/m₃).

Kuyukina et al (2009) *Int. Biodeter. Biodegrad*. 63:427–432; Kuyukina et al (2017) *J. Env. Chem. Engin.* 5:1252–1260

Why slurry bioreactor ?

- Facilitates growth of hydrocarbon-oxidizing bacteria
- High contact area between oil degraders and pollutant
- Control of operating parameters (T^o, pH, O₂, biomass)
- Operation under cold conditions
- Reduction of treatment time and biocatalyst application rate

Direct PCR detection of PVA-immobilized *Rhodococcus* in soil

RU Patent 2475542; Kuyukina et al. (2013) Int. Biodeter. Biodegrad. 84: 118–125

Krasnodar krai (2005-2007)

Joint project with the Biotechnology Centre, Kuban State University

Bioremediation efficiency – 74,4 % after 2,5 months

Hungary, (2009-2010)

Sampling for chemical & microbiological analyses

"Priroda-Perm", Plc. is a strategic partner

Activity fields

- 1. Processing and utilization of solid/liquid oily wastes.
- 2. Treatment and utilization of drilling mud cuttings.
- 3. Utilization of paraffin sediments, contaminated materials, wastewaters.
- 4. Emergency response to oil spills.
- 5. Oil storage tank cleanout.
- 6. Oil contaminated soil remediation.
- 7. Expert examination of production safety.

Contaminated soil + immobilized biocatalyst

46 Gazety Zvezda Str., 614007 Perm, Russia Fax: (342) 244-00-36 (342) 214-41-54 e-mail: <u>referent@priroda-perm.ru</u> www.priroda-perm.ru

Processing and treatment of oil-contaminated soil (OCS) using a bioremediation technique

Unloading of OCS from oil waste storage pit using special-purpose machinery

Zone of liquid waste accumulation

Development of a technological site

Unloading of OCS to the technological site

Cleanup of the oil waste storage pit

Conclusion

• Risk based approach to the management and bioremediation of a crude oil contaminated site is applied.

- Bioremediation techniques such as soil-slurry bioreactors, augmentation with immobilized cultures of hydrocarbon-oxidizing bacteria and biosurfactant addition were proven to be efficient in the clean-up of oilcontaminated soil in cold climate conditions.
- In a pilot scale field trial, heavily contaminated soil was cleaned-up to within risk assessment standards.
- Eco-biotechnology developed is commercialized with the Priroda-Perm company.

Acknowledgements

The research was funded by the Russian Science Foundation grant 18-14-00140.

Thank you for your attention !

Questions ??