

Culture collections on the intersection of microbiome and material research: *What can be achieved?*

Dennis Enning

Berliner Hochschule für Technik

Anna A. Gorbushina

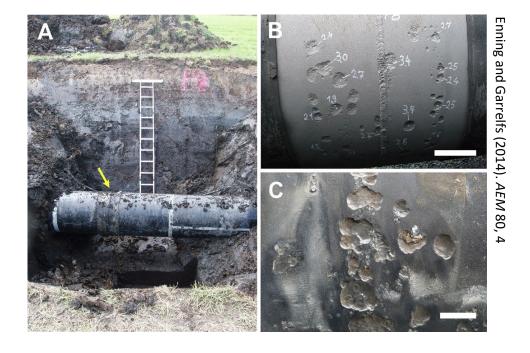
Bundesanstalt für Materialforschung und –prüfung & Freie Universität Berlin

Bundesanstalt für Materialforschung und -prüfung

Let's start with a curious question...

The entire *biosphere* on Earth is how much bigger (by mass) than the planet's *technosphere*?

- A) 10.000 times bigger
- B) 1.000 times bigger
- C) 100 times bigger
- D) 10 times bigger
- E) They are about the same



Microbial impact on human-made materials (examples)

Oil and gas pipelines (corrosion)

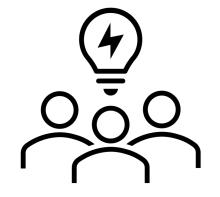
3.5 million kilometers

MIC: >\$10B/yr in economic loss

Solar panels (fouling / soiling)

About 5.000 km²

Up to 10% loss in efficiency


Goals of this talk

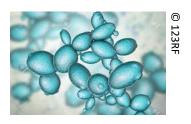
Propose concept and merits of reference organisms

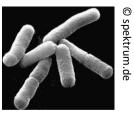
• Two examples with relevance to energy infrastructure

Spark discussion on a culture collection

• Organizational considerations

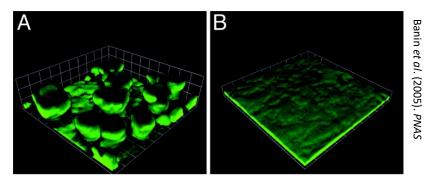
Reference (micro)organisms ≠ Model (micro)organisms

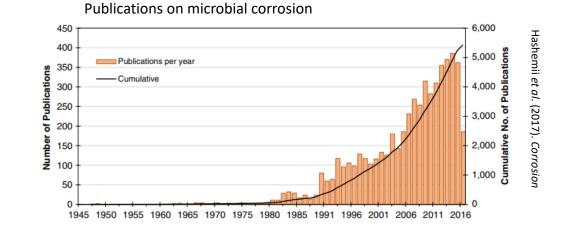

Model organisms


Mus musculus

D. melanogaster

S. cerevisiae


E. coli


Reference organisms

- Terminology is adapted from material science ('reference materials')
- Organisms with proven and **relevant impact on materials**
- Consolidated research focus on few relevant microorganisms (less 'scatter')

Step back: In the study of material-microbe interactions, more focus on fewer organisms is needed

Pseudomonas aeruginosa biofilm

Identified issues

- Many of the pure cultures studied are irrelevant from an applied perspective (not representative, do not cause technically relevant damage,...)
- Large majority of studies are purely descriptive (and repetitive)
- Hundreds of organisms studied, rather than focus on a few relevant ones (breadth instead of depth)

Step back: Why not study the biodeterioration and biodegradation entirely through meta-omics approaches?

Meta(x)omics approaches

- Study process in actual or closely simulated environment
- Determine (potentially) all microorganisms present, along with their metabolic potential and actual activity

Advantage of pure culture work

- Reproducible laboratory simulation and testing
 - Quantification of process rates, test material susceptibility, develop mitigation technologies
- Gain mechanistic understanding
 - Develop monitoring technologies

Step back: Why not study the biodeterioration and biodegradation entirely through meta-omics approaches?

Meta(x)omics approaches

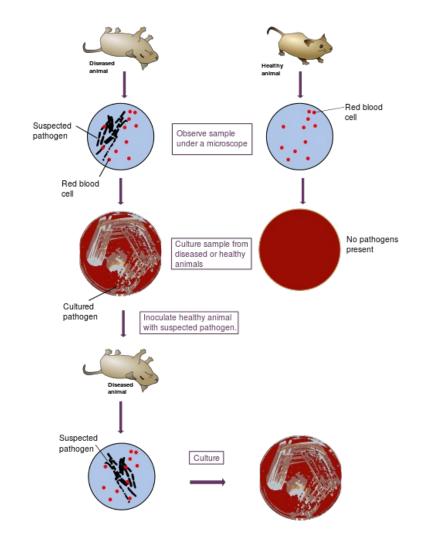
- Study process in actual or closely simulated environment
- Determine (potentially) all microorganisms present, along with their metabolic potential and actual activity

Advantage of pure culture work

- Reproducible laboratory simulation and testing
 - Quantification of process rates, test material susceptibility, develop mitigation technologies
- Gain mechanistic understanding
 - Develop monitoring technologies

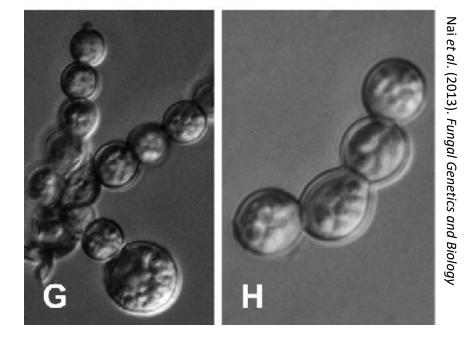
Which microorganisms would be 'ennobled' as refence organisms?

Selection criteria (similar to Koch's postulates)


- Present at the site of damage
- Capable of causing damage of the material to a technically relevant extent

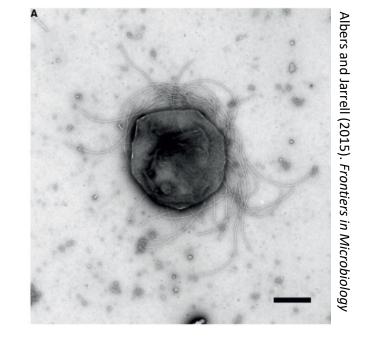
Selection mechanism

• Formal process of granting status (more later)


Benefits (reminder)

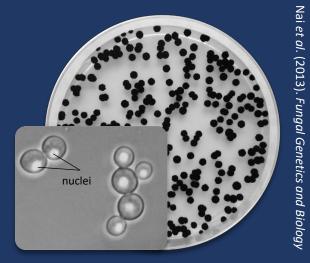
- Focus research on fewer (and relevant!) organisms
- Accelerate generation of <u>applicable</u> discoveries (and technologies)
- Guide to industry (and academia) for strain selection in applied research

Two (proposed) reference organisms


Weathering and soiling of silicon

Knufia petricula

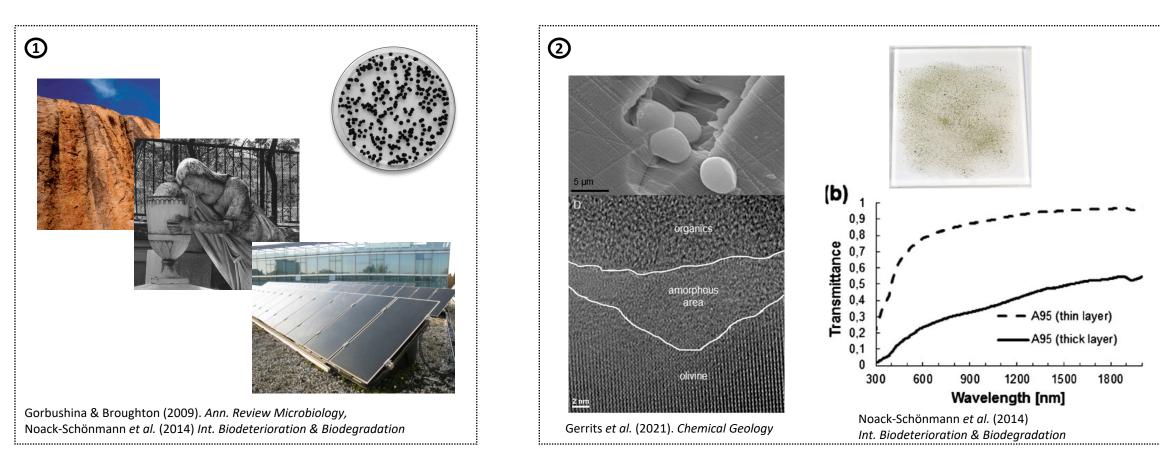
Strain A95


Corrosion of carbon steel

Methanococcus maripaludis

Strain OS7

Weathering & <u>Soiling of silicon</u>


Knufia petricola strain A95

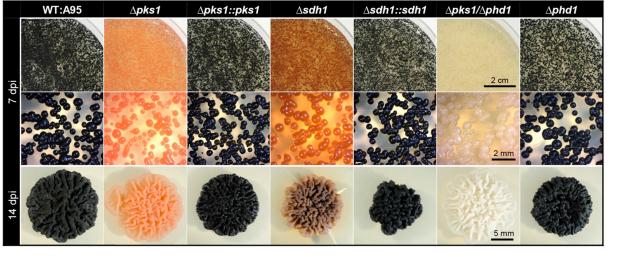
K. petricola (strain A95) – A 'reference organisms' in the weathering and soiling of silicates

Selection criteria (similar to Koch's postulates)

1 Present at the site of damage

2 Capable of causing damage of the material to a technically relevant extent

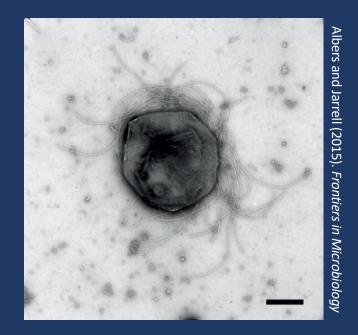
K. petricola (strain A95) – A 'reference organisms' in the weathering and soiling of silicates


Special traits of the organism:

Comparatively decent growth rates in axenic culture and genetic amenability

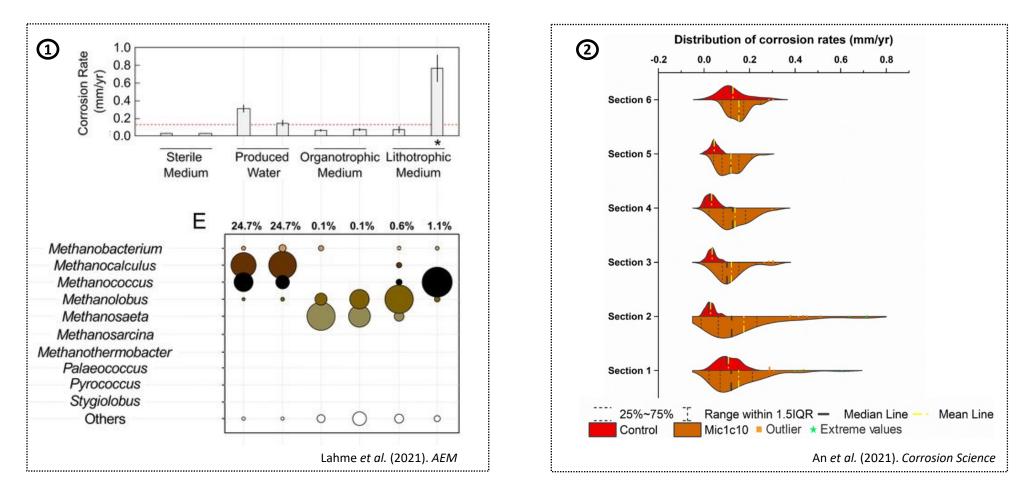
Insights and achievements through a focus on <u>one</u> organism (10+ years)

- Relevance demonstrated and quantified
- Genetic system established:
 - High quality genome sequence
 - 2 genomic loci for neutral insertion
 - 3 genomic loci for insertion w/ color-based screening
 - CRISPR/Cas9 (genome editing)
 - ...
- In-depth mechanistic studies possible


Genome-editing of K. petricola (e.g. pigment synthesis)

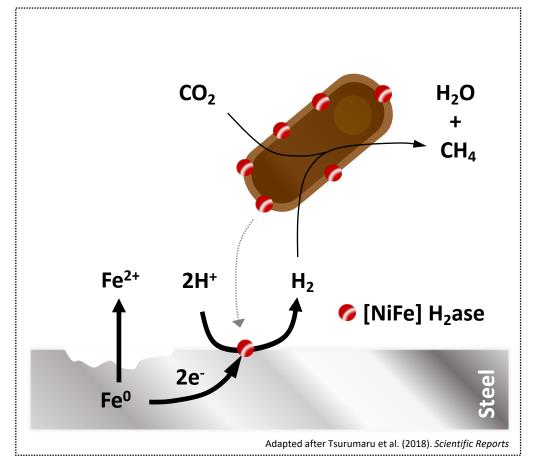
Noack-Schönmann et al. 2014, AMB Express Voigt, Knabe et al. 2020, Sci Rep Erdmann et al. 2022, *Front Fungal Biol*

Corrosion of carbon steel


Methanococcus maripaludis (strain OS7)

M. maripaludis (strain OS7) – A 'reference organism' in the corrosion of steel

Selection criteria (similar to Koch's postulates)


Present at the site of damage

2 Capable of causing damage of the material to a technically relevant extent

M. maripaludis (strain OS7) – A 'reference organism' in the corrosion of steel

Molecular mechanisms of corrosion resolved

Insights through a focus on <u>one</u> organism

- Relevance demonstrated and quantified
- Mechanistic understanding of microbe-metal interaction gained

Real world merits (for industry): Development of a diagnostic tool (qPCR) to detect steel-degrading methanogens in pipelines

qPCR assay for micH:

Corrosive methanogens see Lahme *et al.* (2021). *AEM*

Harmless methanogens

Companies commercially offering the micH assay

The two first candidates for the proposed culture collection?

RO Name: *Knufia petricola* isolate A95

Is the cause of the following biodeterioration phenomenon/process: dissolution of minerals, fouling of air-exposed materials

Relevant to the following material: rocks, solar panels, material surfaces, exposed to the atmosphere

Can biodeterioration effect/colonisation of the material surface by this RO be quantified: yes (CFU and qPCR)

If yes, please, name the method(s): colonization/biomass can be measured with qPCR and biodeterioration can be analyzed with (i) leachate chemistry via ICP-OES/MS (inductively coupled plasma optical emission spectrometry/mass spectrometry) and via SEM/TEM-EDX (scanning electron microscopy/transmission electron microscopy-energy dispersive X-ray spectrometry)

Most prominent under following climatic conditions: TBD

Biofilm former: forms SABs in association with algae, cyanobacteria, other fungi and heterotrophic bacteria

Pure culture available: yes

Frequency of occurrence: Sub-aerial biofilms (SAB) are ubiquitous, found on air-exposed surfaces at all altitudes and latitudes

How many isolates are represented by this particular strain: a rock-inhabiting clade in Chaetothyriales

How high is the growth rate/generation time: 17h in MEB

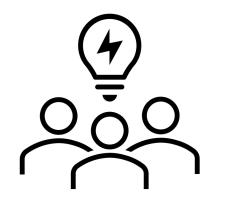
Genetically amenable: yes

Full genome sequence available: yes

Date of discovery (since when is known to science as the cause of biodeterioration): 1996

Original references:

A collection of reference organisms: What can be achieved?


Small and specialized collection

• An organism's inclusion into the collection grants a 'special status' to the organism (at least in the context of material science, biodeterioration and biodegradation)

Mechanism for strain inclusion (the 'gateway')

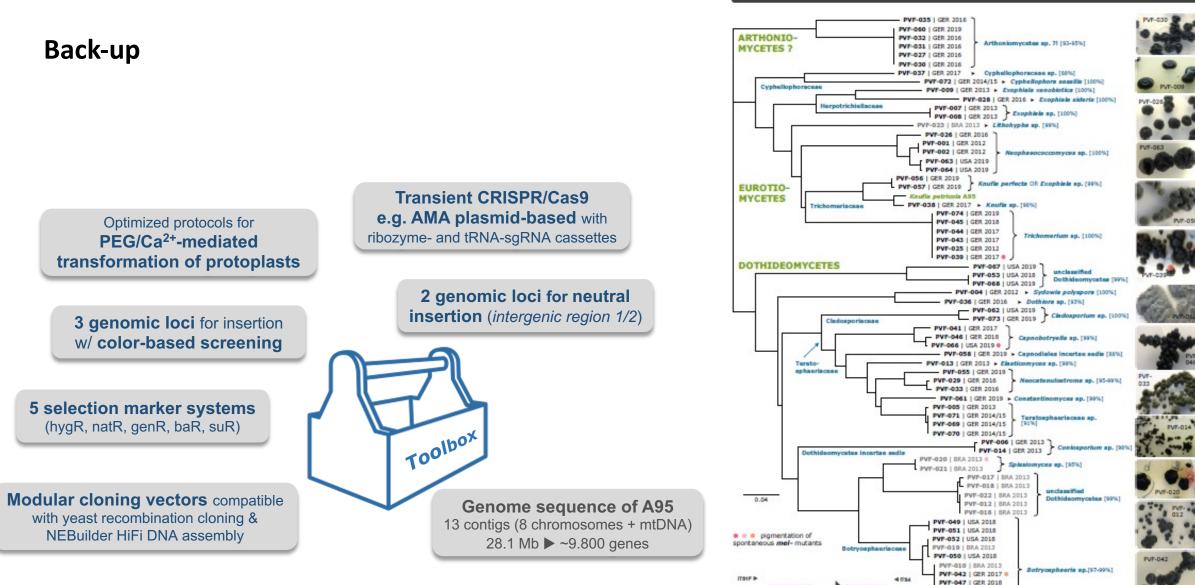
- Generally, cause and effect must be demonstrated, along with technical relevance
- Specific selection mechanism to be determined, e.g.
 - Demonstration of presence in the affected environment (published in peer-reviewed journal)
 - Demonstration of ability to cause technically relevant damage (corrosion, fouling, ...) under field-simulating conditions (published in peer-reviewed journal)
 - Three or more publications in total on the organisms from at least two different labs
 - International (and distinguished) selection committee

Merits and limits of such a strain collection?

Discussion (very) welcome!

Thank you for your attention

Bundesanstalt für Materialforschung und -prüfung



Comparison of ITS sequences of 68 black fungi from solar panels

PVF-054 | GER 2019 PVF-059 | GER 2019 PVF-075 | GER 2020

PVF-076 | GER 2020

ITS region sequenced

Schumacher et al., unpublished